3.1155 \(\int \frac{\left (a+b x^2\right )^p \left (c+d x^2\right )^q}{(e x)^{3/2}} \, dx\)

Optimal. Leaf size=89 \[ -\frac{2 \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (c+d x^2\right )^q \left (\frac{d x^2}{c}+1\right )^{-q} F_1\left (-\frac{1}{4};-p,-q;\frac{3}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{e \sqrt{e x}} \]

[Out]

(-2*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[-1/4, -p, -q, 3/4, -((b*x^2)/a), -((d*x
^2)/c)])/(e*Sqrt[e*x]*(1 + (b*x^2)/a)^p*(1 + (d*x^2)/c)^q)

_______________________________________________________________________________________

Rubi [A]  time = 0.216652, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077 \[ -\frac{2 \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (c+d x^2\right )^q \left (\frac{d x^2}{c}+1\right )^{-q} F_1\left (-\frac{1}{4};-p,-q;\frac{3}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{e \sqrt{e x}} \]

Antiderivative was successfully verified.

[In]  Int[((a + b*x^2)^p*(c + d*x^2)^q)/(e*x)^(3/2),x]

[Out]

(-2*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[-1/4, -p, -q, 3/4, -((b*x^2)/a), -((d*x
^2)/c)])/(e*Sqrt[e*x]*(1 + (b*x^2)/a)^p*(1 + (d*x^2)/c)^q)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 32.863, size = 73, normalized size = 0.82 \[ - \frac{2 \left (1 + \frac{b x^{2}}{a}\right )^{- p} \left (1 + \frac{d x^{2}}{c}\right )^{- q} \left (a + b x^{2}\right )^{p} \left (c + d x^{2}\right )^{q} \operatorname{appellf_{1}}{\left (- \frac{1}{4},- p,- q,\frac{3}{4},- \frac{b x^{2}}{a},- \frac{d x^{2}}{c} \right )}}{e \sqrt{e x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x**2+a)**p*(d*x**2+c)**q/(e*x)**(3/2),x)

[Out]

-2*(1 + b*x**2/a)**(-p)*(1 + d*x**2/c)**(-q)*(a + b*x**2)**p*(c + d*x**2)**q*app
ellf1(-1/4, -p, -q, 3/4, -b*x**2/a, -d*x**2/c)/(e*sqrt(e*x))

_______________________________________________________________________________________

Mathematica [B]  time = 0.387302, size = 179, normalized size = 2.01 \[ -\frac{6 a c x \left (a+b x^2\right )^p \left (c+d x^2\right )^q F_1\left (-\frac{1}{4};-p,-q;\frac{3}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{(e x)^{3/2} \left (4 x^2 \left (b c p F_1\left (\frac{3}{4};1-p,-q;\frac{7}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )+a d q F_1\left (\frac{3}{4};-p,1-q;\frac{7}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )\right )+3 a c F_1\left (-\frac{1}{4};-p,-q;\frac{3}{4};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[((a + b*x^2)^p*(c + d*x^2)^q)/(e*x)^(3/2),x]

[Out]

(-6*a*c*x*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[-1/4, -p, -q, 3/4, -((b*x^2)/a),
-((d*x^2)/c)])/((e*x)^(3/2)*(3*a*c*AppellF1[-1/4, -p, -q, 3/4, -((b*x^2)/a), -((
d*x^2)/c)] + 4*x^2*(b*c*p*AppellF1[3/4, 1 - p, -q, 7/4, -((b*x^2)/a), -((d*x^2)/
c)] + a*d*q*AppellF1[3/4, -p, 1 - q, 7/4, -((b*x^2)/a), -((d*x^2)/c)])))

_______________________________________________________________________________________

Maple [F]  time = 0.06, size = 0, normalized size = 0. \[ \int{ \left ( b{x}^{2}+a \right ) ^{p} \left ( d{x}^{2}+c \right ) ^{q} \left ( ex \right ) ^{-{\frac{3}{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(3/2),x)

[Out]

int((b*x^2+a)^p*(d*x^2+c)^q/(e*x)^(3/2),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}}{\left (e x\right )^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p*(d*x^2 + c)^q/(e*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p*(d*x^2 + c)^q/(e*x)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}}{\sqrt{e x} e x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p*(d*x^2 + c)^q/(e*x)^(3/2),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p*(d*x^2 + c)^q/(sqrt(e*x)*e*x), x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x**2+a)**p*(d*x**2+c)**q/(e*x)**(3/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}}{\left (e x\right )^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p*(d*x^2 + c)^q/(e*x)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p*(d*x^2 + c)^q/(e*x)^(3/2), x)